
DIRECTX ADVANCEMENTS IN THE MANY CORE ERA
Getting the most out of the PC Platform

System Architecture Trends

CPU Evolution
From single core to multi-core

Power wall limits frequency scaling

GPU Evolution
Unified processor cores

Multiple hardware engines

MMU and paged memories

More autonomous, fully

programmable machines

Highly Integrated SoC Designs

GeForce FX 5800
GeForce 6800 Ultra

GeForce 7800 GTX

GeForce 8800 GTX

GeForce GTX 280

GeForce GTX 480

GeForce GTX 580

GeForce GTX 680

GeForce GTX TITAN

GeForce 780 Ti

Pentium 4

Woodcrest

Harpertown

BloomfieldWestmere

Sandy Bridge
Ivy Bridge

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

Apr-01 Jan-04 Oct-06 Jul-09 Apr-12 Dec-14

NVIDIA GPU Single Precision

Intel CPU Single Precision

Northwood

Prescott
Woodcrest

Harpertown

Bloomfield

Westmere

Sandy Bridge
Ivy Bridge

GeForce FX 5900

GeForce 6800 GT

GeForce 7800 GTX

GeForce 8800 GTX

GeForce GTX 280

GeForce GTX 480

GeForce GTX 680

GeForce 780 Ti

0

30

60

90

120

150

180

210

240

270

300

330

360

2003 2005 2007 2009 2011 2013

CPU

GeForce GPU

GPU vs CPU Perf Scaling
G

F
L
O

P
S

G
B
/
s

Application Trends

From Functional Parallelism to Task-

based Parallelism
Graphs of jobs, work stealing schedulers

GPU as a General Purpose Processor
Physics & simulation, “Programmable Graphics”

Requires more control over underlying hardware

Content is King
Shifting balance between runtime costs vs

production costs
From “Parallel Futures of a Game Engine”

© Johan Andersson

Current API Abstraction is Getting Old

Designed After >20 Years Old Machine Abstraction

Large State Machine Abstraction
State transitions orchestrated by the CPU

Opaque Memory Model
Resource management hidden from the app

Limited Multi-core Scalability
Serial submission model

Implicit Hazard Tracking and Synchronization
High work submission costs

HOST

DEVICE

cmd

cmd

cmd

cmd

Radical Reductions in Submission Overhead

Embrace Latest GPU Architectural

Improvements

Highly Scalable on Multi-core Systems

Provide Console-like Execution Environment

Designed in Close Collaboration Between

Microsoft and NVIDIA

But…

Application Takes on More Responsibilities
Resource hazard tracking

CPU-GPU synchronization

Memory management

Much Easier to Shoot Yourself in the Foot
DX11 is still a great API for apps that want a simpler,

more automatic programming model

Well Written App Will Get Great Benefits!

DX12 Nuts
and Bolts

State Management Model

Command Lists

Resource Binding And Hazard Tracking

Residency Management And Memory Model

CPU/GPU Synchronization

State Management

Further State Grouping and Factorization
Provide opportunities for aggressive pre-baking

As much cost as possible is paid up-front

Pipeline State Encapsulates Heavy-weight State
Bits of state specified and used together

More Frequently Changing State Still Lives

Outside PSOs
Lighter weight state changes

ID3D12PipelineState

ID3D11*Shader

ID3D11RasterizerState

…

ID3D11BlendState

ID3D11DepthStencilState

ID3D11InputLayout

PSO and Non-PSO State

PSO Non-PSO

Shader Program at Every Stage Resource Bindings

Blend State Viewport Mappings

Rasterizer State Scissor Rectangles

Depth-stencil State Blend Factor

Input Layout Depth Test

Render Target Properties Stencil

Input Topology “Type” Input Topology “Bucket” (List vs Strip)

New Binding Model

Current GPUs Can Reference a Large Namespace of Resources
So called “bindless” model

Resource Binding State is “Pulled” Into the System
Rather than CPU “pushing” it - more scalable and efficient

Can Reference a Very Large Working Set of Resources
E.g. Kepler GPUs can use a “palette” of > 1M textures

Shader Code

Bindless Benefits
Essential for raytracing and next-gen rendering

where resource working set is not known in advance

Descriptors

Descriptors encapsulate handles to resources
Semantically equivalent to ID3D11*ResourceView objects

Opaque bag of bits, of implementation-specific format and size

Expected to be on the order of 64B-128B

No driver-side allocations associated with descriptors
Can be freely copied around and thrown away by the app

API functions to create descriptors given app-provided specification

Descriptor Tables and Heaps

Descriptor Tables Encapsulate Palettes

of Resource References
Contiguous arrays of descriptor entries

Individual descriptors indexable from the GPU

Tables Defined in Descriptor Heaps
Driver provided memory

Implementation-specific size restrictions

Represent Unit of Resource Binding State
Allow for bulk binding of resources

Descriptor Heap

SRV desc #0

SRV desc #1

SRV desc #N

…

…

…

Table #0

SRV desc #0

SRV desc #1

SRV desc #N

…

…

Table #1

SRV desc #0

SRV desc #1
…

Table #6

Descriptors, Tables, and Heaps

Tables Very Cheap to Switch

Ideally just a pointer change to the HW

Efficent bulk binding state change

A Collection of Tables Can be Set at a Time

Shaders can select a table to use for indexing

Restrictions based on resource type

Applications Responsible for Managing Tables Within Heaps

Various strategies, balancing heap space vs performance

Command Lists

Fundamental Unit of Work Submission
No immediate contexts anymore

Designed to be Fully Bakable by the Driver
Cannot be nested

No further translation needed at submit time

Multiple Threads Can Record and Enqueue

Concurrently

Represent Rendering Segments
Re-recorded and played back every frame

Command List

SetState()

Draw()

…

…

Draw()

SetState()

Dispatch()

…

Draw()

Bundles

Highly Reusable Rendering Components
A kind of command list

Can Only be Executed From “Direct” Command Lists

Non-pipeline State Inherited from the Calling Command List
Provides for reuse flexibility

Represent Individual Objects in a Scene
Collection of draws and state changes

Residency Management And Heaps

Heaps Represent Bulk Memory Allocation
Unit of OS/driver memory management

Explicitly Separate From The Binding Model
Individual resource bindings no longer tracked

Residency Managed At Coarse Grain Per Heap
Applications responsible for managing memory within heaps

Hazard Tracking

Implicit Hazard Tracking Becoming Hard and Impractical
Tiled resources allow for memory aliasing

Very large palette of resources can be referenced

Applications Use Explicit Barriers to Signal Hazards
E.g. resource transitioning from RTV to SRV

Can exploit app-level knowledge and be less conservative

Robustness vs Efficiency Trade off

CPU/GPU Synchronization

Hazards Between Multiple Concurrent Processors Managed With Fences
CPU sharing data with the GPU

Applications Responsible for Setting Fences and Tracking Them
Can use standard OS synchronization APIs

Renaming and versioning optimizations are responsibility of the app
Dynamic Resources are Effectively Permanently Mapped

Diving Into
Nitrous

Nitrous = Oxide’s custom engine

Specifically designed for high throughput

Core neutral. Main thread acts only as

lightweight sequencer

All work divided up into small jobs, which

are in the microsecond range

Can produce lots of jobs, 10,000+ range

per frame

Multi-core CPU Basics

Be Wary, There Is A Lot Of Very Bad Advice In The Wild
Spawning threads to handle tasks

Relying OS preemptive scheduler, heavy weight OS synchronization primitives

Functional threading in general

Your Survival Guide
OK: Multi-thread read of same location

OK: Multi-thread write to different locations

OK: Multi-thread write to same location in ‘stamp’ mode

CAUTION: Atomic instructions

STOP: Multi-thread read/write to same location

STOP: Multi-thread write to same CACHE line

Even Frame Odd Frame

Setting Up Our Frame

Concept of Asynchronous GPU

Now Exposed Through API

Must buffer frames ourselves

Will create 2+ copies of everything

CPU to GPU Data

Shader constants

Texture updates

GPU Commands

Command group = self contained, no

cross thread hazards

Means WAW, RAW hazards must be

marked in command buffers

Data nor command should not be

changed while GPU could be reading

Command

Buffer

GPU visible

memory

Command

Buffer

Command

Buffer

Command

Buffer

GPU visible

memory

Command

Buffer

Command

Buffer

But … Commands May be Generated OoO

Command Buffer

Command Buffer

Command Buffer

Command Buffer

GPU

Inter Frame Data

Job Scheduler

Core 0

Command

Buffer

Command

Buffer

Core 1 Core 2

Command

Buffer

Command

Buffer

More details about our frame

In reality, diagram is over simplified

Nitrous has it’s own internal command format
Small, efficient commands

Stateless, each command contains references to all needed state

Inheritance unneeded

Seperates internal graphics system from any particular API

Being Stateless, can be generated completely out of order

Entire Frame is queued up in internal command format

D3D12 is translated. Each internal command is translated, 1:1 mapping for
each command buffer to a D3D12 command list

Get’s more optimal use out of instruction cache and data cache
Allows us surrender the entire system to the driver

Shaders

Shader Blocks

Group of shaders with identicle

resources

Key point: No changing of individual

shaders, shader considered one

monolithic block

All resources bound at same places

across all stages

Maps well to a group of pipeline

state objects in d3d12

ShaderGroup SimpleShader

{

ResourceSetPrimitive = VertexData;

ConstantSetDynamic[0] = DynamicData;

ResourceSetBatch[1] = UserTS;

ConstantSetShader[0] = Globals;

Methods

{

main:

CodeBlocks = SimpleShaders;

VertexShader = SimpleVSShader;

PixelShader = SimplePSShader;

zprime:

CodeBlocks = SimpleShaders;

VertexShader = SimpleVSShader;

PixelShader = BlankSimplePSShader;

}

}

Even FrameBatch Set

Four Frequencies of Updates

Batch 0 Batch 1 Batch 2 Batch 3 Batch 4

Prim 0 Prim 1 Prim 2

Prim 1 Prim 2

PRIMITIVE BATCH

BATCH SET SHADER

IB

Resources

Tri info

Primitive

Shader

Resources (2)

Constants (2)

Batches

Primitives

Shaders

RTs

Blend State

Resources (2)

Constants (2)

Shader Block

Resource Sets

In Real World, Textures

Are Grouped

Nitrous Has 5 Bind Points
2 for batch

2 for shader

1 for primitive

VB Is Just A Resource Set

Maps Well To D3d12 Descriptor Tables

SPACE FIGHTER 1

(0) Albiedo

(1) Material Mask

(2) Ambient Occlusion

(3) Normal Map

(4) Weathering Map

Memory Pools

Resources used together, created

together

Multiple resource sets are often pooled

Simplifies memory management, less

then 1000 total allocations

Maps well to D3D12 memory heap

Orange Team Unit’s Memory

SPACE FIGHTER 1 CARRIER REAR

CARRIER FORWARD CARRIER MAIN

(0) Albiedo

(1) Material Mask

(2) Ambient Occlusion

(3) Normal Map

(4) Weathering Map

(0) Albiedo

(1) Material Mask

(2) Ambient Occlusion

(3) Normal Map

(4) Weathering Map

(0) Albiedo

(1) Material Mask

(2) Ambient Occlusion

(3) Normal Map

(4) Weathering Map

(0) Albiedo

(1) Material Mask

(2) Ambient Occlusion

(3) Normal Map

(4) Weathering Map

Constants and Resource Updates

Common data used per frame is dumped into a “Graphics Transfer Memory”

Reset every frame, with a simple incrementing counter

All constants are uploaded into this memory, and referenced by commands

Per frame resource updates placed in this memory

No point in resizing and reallocating, need the max memory planned for in advance

Non per frame updates, which are big, other memory is allocated, but caller must

free memory after receiving notification that GPU command is complete

D3d12 this ends up just being a buffer

Starting the frame

bool BeginFrame()

{

bool bGPUbound = true

int FrameData = g_uFrame % FramesQueued

if g_Fences[FrameData] is blocking

then g_Fences[FrameData]->WaitOnFence

Else bGPUBound = false

//we know the GPU is free with this now

g_FrameData[FrameData]->LockAndMap()

g_uFrame++;

return bGPUBound;

}

This function should take

place on sequencer thread,

once ready to begin

generating commands

Can place timers around

both sides of the fence and

get accurate CPU side time

of our app

Median frames queed up

should be FramesQueued +

.5, so usually only 1.5

frames behind

Generating a command list

Once frame has begun, can begin issuing command lists

Easy strategy: Create 2 sets of command lists, 1 set for the frame
being rendered, and 1 for the frame being generated (or n, if more
then 2 frames are queued)

What we do:
Create a series of tasks which dump rendering into command buffer

Don’t create a new command buffer for every task, however, each thread has
a context which points to a command buffer

So, if we have 6 CPUs and 600 objects to process in a particular system, will
end up generating 6 command buffers with 100 batches each

The draw order will fluctuate frame to frame, so must handle alpha
differently

Resource Sets

Batch Consts 2

Batch Consts 1

Batch Consts 0

Primitive VB RS

Shader RS1

Shader RS0

Batch RS1

Batch RS0

Shader Const 1

Shader Const 0

Natural Allegory To Descriptor Tables
Since Resource Sets are immutable, and can bind multiple, can

pre create

If hardware can support multiple descriptor tables,

conceivable that we don’t have to update them per frame ever

Otherwise, need to dynamically create a descritor table for

each batch

What Resource Bindings Exist For Nitrous? Turns

Out We Have A Small State Vector

Bindings

If we have enough binding points, then we simply bind the

descriptor table to that bind point

If we have don’t have enough bind points (e.g. only 1), then

we create a new table for parts of the bind vector that we

need

Can Cache them

Descriptor Table Binding Vector

Constants Binding Vector

Batch Consts 2

Batch Consts 1

Batch Consts 0

Primitive VB RS

Shader RS1

Shader RS0

Batch RS1

Batch RS0

Shader Const 1

Shader Const 0

Generating a Command List

For each Batch (inside a task)

Create State vector from Batch, Shader, and Primitive

if not enough bind points

Lookup state vector in our cache (16 entry, unique cache

per thread)

if in cache

Bind created descriptor table

else

Create New descriptor table (since same size, we have a simple

pool of them)

Bind descriptor table, evict last used thing in cache and add

to cache

…

Tracking Resource Usage

Apps responsibility to track what

resources get used

Simple strategy: Stamp a frame number

on each memory pool anytime it is bound

Traverse the complete resource list,

anything which matches current frame

must be resident

Quick as long as we keep # of heaps

reasonable

Important: Frame # should be padded

into a cache line to avoid serialization

Heap Description Last Frame Used

UI Textures intro 2401

UI Textures in Game 17204

Orange Faction Units 17204

Purple Faction Units 17204

Weapon effects 16392

Post Process RTs 17204

Terrain Heightmap 17204

Expected results

Expecting large increases in performance in terms of CPU time spent in

driver/D3D

Expecting vast reduction in driver complexity, hopefully more robust

drivers

Expecting less frames to be queued, generally more responsive games

Shouldn’t have frame hitches caused by driver at all.

WE WOULD LIKE YOUR FEEDBACK

Please take a moment to fill out this 2 minute survey on your own

device for this talk

We appreciate your input

